A note on computing matrix geometric means

نویسندگان

  • Dario Bini
  • Bruno Iannazzo
چکیده

A new definition is introduced for the matrix geometric mean of a set of k positive definite n×n matrices together with an iterative method for its computation. The iterative method is locally convergent with cubic convergence and requires O(n3k2) arithmetic operations per step whereas the methods based on the symmetrization technique of Ando, Li and Mathias [Linear Algebra Appl., 385 (2004), pp. 305–334] have complexity O(n3k!2k). The new mean is obtained from the properties of the centroid of a triangle rephrased in terms of geodesics in a suitable Riemannian geometry on the set of positive definite matrices. It satisfies most part of the 10 properties stated by Ando, Li and Mathias; a counterexample shows that monotonicity is not fulfilled.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

A Note on the First Geometric-Arithmetic Index of Hexagonal Systems and Phenylenes

The first geometric-arithmetic index was introduced in the chemical theory as the summation of 2 du dv /(du  dv ) overall edges of the graph, where du stand for the degree of the vertex u. In this paper we give the expressions for computing the first geometric-arithmetic index of hexagonal systems and phenylenes and present new method for describing hexagonal system by corresponding a simple g...

متن کامل

. C A ] 2 4 Se p 20 10 A Note on the Weighted Harmonic - Geometric - Arithmetic Means Inequalities ∗

In this note, we derive non trivial sharp bounds related to the weighted harmonic-geometric-arithmetic means inequalities, when two out of the three terms are known. As application, we give an explicit bound for the trace of the inverse of a symmetric positive definite matrix and an inequality related to the coefficients of polynomials with positive roots.

متن کامل

Improved logarithmic-geometric mean inequality and its application

In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.

متن کامل

Machine Repair Queueing System with with Non-Reliable Service Stations And Heterogeneous Service Discipline (RESEARCH NOTE)

This investigation deals with M/M/R/N machine repair problem with R non-reliable service stations which are subjected to unpredictable breakdown. 1here is provision of an additional server to reduce backlog in the case of heavy load of failed machines. 1he permanent service stations repair the failed machines at an identical rate m and switch to faster repair rate when all service stations are ...

متن کامل

A Note on the Weighted Harmonic–geometric–arithmetic Means Inequalities

In this note, we derive non trivial sharp bounds related to the weighted harmonicgeometric-arithmetic means inequalities, when two out of the three terms are known. As application, we give an explicit bound for the trace of the inverse of a symmetric positive definite matrix and an inequality related to the coefficients of polynomials with positive roots. Mathematics subject classification (201...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2011